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Abstract

Cognitive control refers to the flexible deployment of memory and attention in re-
sponse to task demands and current goals. Control is often studied experimentally
by presenting sequences of stimuli, some demanding a response, and others mod-
ulating the stimulus-response mapping. In these tasks, participants must maintain
information about the current stimulus-response mapping in working memory.
Prominent theories of cognitive control use recurrent neural nets to implement
working memory, and optimize memory utilization via reinforcement learning.
We present a novel perspective on cognitive control in which working memory
representations are intrinsically probabilistic, and control operations that maintain
and update working memory are dynamically determined via probabilistic infer-
ence. We show that our model provides a parsimonious account of behavioral and
neuroimaging data, and suggest that it offers an elegant conceptualization of con-
trol in which behavior can be cast as optimal, subject to limitations on learning
and the rate of information processing. Moreover, our model provides insight into
how task instructions can be directly translated into appropriate behavior and then
efficiently refined with subsequent task experience.

1 Introduction

Cognitive control can be characterized as the ability to guide behavior according to current goals
and plans. Control often involves overriding default or overlearned behaviors. Classic examples of
experimental tasks requiring this ability include Stroop, Wisconsin card sorting, and task switch-
ing (for a review, see [1]). Although these paradigms vary in superficial features, they share the
key underlying property that successful performance involves updating and maintaining a task set.
The task set holds the information required for successful performance, e.g., the stimulus-response
mapping, or the dimension along which stimuli are to be classified or reported. For example, in
Wisconsin card sorting, participants are asked to classify cards with varying numbers of instances of
a colored symbol. The classification might be based on color, symbol, or numerosity; instructions
require participants to identify the current dimension through trial and error, and perform the ap-
propriate classification until the dimension switches after some unspecified number of trials. Thus,
it requires participants to maintain a task set—the classification dimension—in working memory
(WM). Likewise, in the Stroop task, stimuli are color names presented in various ink colors, and the
task set specifies whether the color is to be named or the word is to be read.

To understand cognitive control, we need to characterize the brain’s policy for updating, maintaining,
and utilizing task set. Moreover, we need to develop theories of how task instructions are translated
into a policy, and how this policy is refined with subsequent experience performing a task.

1.1 Current Computational Theories of Control

From a purely computational perspective, control is not a great challenge. Every computer program
modulates its execution based on internal state variables. The earliest psychological theories of con-
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trol had this flavor: Higher cognitive function was conceived of as a logical symbol system whose
variables could be arbitrarily bound [2], allowing for instructions to be used appropriately—and
perfectly—to update representations that support task performance. For example, in the Wisconsin
card sorting task, the control instruction—the classification dimension—would be bound to a vari-
able, and responses would be produced by rules of the form, “If the current dimension is D and
the stimulus is X, respond Y”. Behavioral data indicate that this naive computational perspective is
unlikely to be how control is implemented in the brain. Consider the following phenomena:

• When participants are asked to switch tasks, performance on the first trial following a
switch is inefficient, although performance on subsequent trials is efficient, suggesting that
loading a new task set depends on actually performing the new task [3]. This finding
is observed even for very simple tasks, and even when the switches are regular, highly
predictable, and well practiced.

• Switch costs are asymmetric, such that switching from an easy task to a difficult task is
easier than vice-versa [4].

• Some task sets are more difficult to implement than others. For example, in the Stroop task,
reading the word is quick and accurate, but naming the ink color is not [5].

• The difficulty of a particular task depends not only on the characteristics of the task itself,
but also on context in which participants might be called upon to perform [6].

To account for phenomena such as these, theories of control have in recent years focused on how
control can be implemented in cortical neural networks. In the prevailing neural-network-based
theory, task set is represented in an activity-based memory system, i.e., a population of neurons
whose recurrent activity maintains the representation over time. This active memory, posited to
reside in prefrontal cortex (PFC), serves to bias ongoing processing in posterior cortical regions to
achieve flexibility and arbitrary, task-dependent stimulus-response mappings (for review, see [1]).
For example, in the Stroop task, instructions to report the ink color might bias the neural population
representing colors—i.e., increase their baseline activity prior to stimulus onset—such that when
stimulus information arrives, it will reach threshold more rapidly, and will beat out the neural pop-
ulation that represents word orthography in triggering response systems [7]. In this framework, a
control policy must specify the updating and maintenance task set, which involves when to gate new
representations into WM and the strength of the recurrent connection that maintains the memory.
Further, the policy must specify which WM populations bias which posterior representations, and
the degree to which biasing is required. Some modelers have simply specified the policy by hand
[8], whereas most pretrain the model to perform a task—in a manner meant to reflect long-term
learning prior to experimental testing [7, 9, 10].

These models provide an account for a range of neurophysiological and behavioral data. However,
they might be criticized on a number of grounds. First, like their symbolic predecessors, the neural
network models must often be crippled arbitrarily to explain data; for example, by limiting the
strength of recurrent memory connections, the models obtain task set decay and can explain error
data. Second, the models require a stage of training which is far more akin to how a monkey
learns to perform a task than to how people follow task instructions. The reinforcement-learning
based models require a long stage of trial-and-error learning before the appropriate control policy
emerges. Whereas monkeys are often trained for months prior to testing, a notable characteristic of
humans is that they can perform a task adequately on the first trial from task instructions [11].

1.2 Control as Inference

Our work aims to provide an alternative, principled conceptualization of cognitive control. Our goal
is to develop an elegant theoretical framework with few free parameters that can easily be applied
to a wide range of experimental tasks. With strong computational and algorithmic constraints, our
framework has few degrees of freedom, and consequently, makes strong, experimentally verifiable
predictions. Additionally, as a more abstract framework than the neural net theories, one aim is to
provide insight as to how task instructions can be used directly and immediately to control behavior.

A fundamental departure of our approach from previous approaches is to consider WM as inherently
probabilistic. That is, instead of proposing that task set is stored in an all-or-none fashion, we wish
to allow for task set—as well as all cortical representations—to be treated as random variables. This
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notion is motivated by computational neuroscience models showing how population codes can be
used to compute under uncertainty [12].

Given inherently probabilistic representations, it is natural to treat the problems of task set updating,
maintenance and utilization as probabilistic inference. To provide an intuition about our approach,
consider this scenario. I will walk around my house and tell you what objects I see. Your job is
to guess what I’ll report next. Suppose I report the following sequence: REFRIGERATOR, STOVE,
SINK, TOILET, SHOWER, DRESSER. To guess what I’m likely to see next, you need to infer what
room I am in. Even though the room is a latent variable, it can be inferred from the sequence of
observations. At some points in the sequence, the room can be determined with great confidence
(e.g., after seeing TOILET and SHOWER). At other times, the room is ambiguous (e.g., following
SINK), and only weak inferences can be drawn.

By analogy, our approach to cognitive control treats task set as a latent variable that must be inferred
from observations. The observations consist of stimulus-response-feedback triples, or stimulus and
correct response pairs. Sometimes the observations will strongly constrain the task set, as in the
Stroop task when the word GREEN is shown in color red, and the correct response is red, or when
an explicit instruction is given to report the ink color; but other times the observations provide
little constraint, as when the word RED is shown in color red, and the correct response is red. One
inference problem is therefore to determine task set from the stimulus-response sequence. A second,
distinct inference problem is to determine the correct response on the current trial from the current
stimulus and the trial history. Thus, in our approach, control and response selection are cast as
inference under uncertainty.

In this paper, we flesh out a model based on this approach. We use the model to account for behav-
ioral data from two experiments. Each experiment involves a complex task environment in which
experimental participants are required to switch among eight tasks that have different degrees of
overlap and inconsistency with one another. Having constrained the model by fitting behavioral
data, we then show that the model can explain neuroimaging data. Moreover, the model provides
a different interpretation to these data than has been suggested previously. Beyond accounting for
data, the model provides an elegant theoretical framework in which control and response selection
can be cast as optimal, subject to limitations on the processing architecture.

2 Experimental Paradigm of Koechlin, Ody, and Kouneiher (2003)

Our model addresses data from two experiments conducted by Koechlin, Ody, and Kouneiher [6]. In
each experiment, participants are shown blocks of 12 trials, preceded by a cue that indicates which
of the eight tasks is to be performed with the stimuli in that block. The task specifies a stimulus-
response mapping. The stimuli in Experiments 1 and 2 are colored squares and colored letters,
respectively. Examples of the sequence of cues and stimuli for the two experiments is shown in
Figure 1A. In both experiments, there are two response buttons, one pressed with the left hand, one
with the right hand.

The stimulus-response mappings for Experiment 1 are shown in the eight numbered boxes of Fig-
ure 1C. (The layout of the boxes will be explained shortly.) Consider task 3 in the upper left corner
of the Figure. The notation indicates that task 3 requires a left response to the green square, a right
response to a red square, and no response (hereafter, no-go) to a white square. Task 4 is identical to
task 3, and the duplication is included because the tasks are described as distinct to participants and
each is associated with a unique task cue. The duplication makes the stimulus-response mapping
twice as likely, because the eight tasks have uniform priors. Task 1 (lower left corner of the figure)
requires a left response for a green square and no-go for a white square. There are no red stimuli in
the task 1 blocks, and the green→left mapping is depicted twice to indicate that the probability of a
green square appearing in the block is twice that of a white square.

We now explain the 3 × 2 arrangement of cells in Figure 1C. First the rows. The four tasks in
the lower row allow for only one possible response (not counting no-go as a response), whereas
the four tasks in the upper row demand that a choice be made between two possible responses.
Thus, the two rows differ in terms of the demands placed on response selection. The three columns
differ in the importance of the task identity. In the leftmost column, task identity does not matter,
because each mapping (e.g., green→left) is consistent irrespective of the task identity. In contrast,
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Figure 1: (A) Examples of stimulus sequences from Exp. 1 and 2 (top and bottom arrows, respec-
tively) of [6]. (B) Eight tasks in Exp. 2, adapted from [6]. (C) Eight tasks in Exp. 1. (D) Response
times from participants in Exp. 1 and 2 (white and black points, respectively). The data points cor-
respond to the filled grey cells of (B) and (C), and appear in homologous locations. X-axis of graph
corresponds to columns of the 3×2 array of cells in (B) and (C); squares and circles correspond to
top and bottom row of each 3×2 array. (E) Simulation results from the model.

tasks utilizing yellow, blue, and cyan stimuli involve varied mappings. For example, yellow maps
to left in two tasks, to right in one task, and to no-go in one task. The tasks in the middle column
are somewhat less dependent on task identity, because the stimulus-response mappings called for
have the highest prior. Thus, the three columns represent a continuum along which the importance
of task identity varies, from being completely irrelevant (left column) to being critical for correct
performance (right column). Empty cells within the grid are conceptually possible, but were omitted
from the experiment.

Experiment 2 has the same structure as Experiment 1 (Figure 1B), with an extra level of complexity.
Rather than mapping a color to a response, the color determines which property of the stimulus is to
be used to select a response. For example, task 3 of Figure 1B demands that a green letter stimulus
(denoted as X here) be classified as a vowel or consonant (property P1), whereas a red letter stimulus
be classified as upper or lower case (property P2). Thus, Experiment 2 places additional demands
of stimulus classification and selection of the appropriate stimulus dimension.

Participants in each experiment received extensive practice on the eight tasks before being tested.
Testing involved presenting each task following each other task, for a total of 64 test blocks.

3 A Probabilistic Generative Model of Control Tasks

Following the style of many probabilistic models in cognitive science, we designed a generative
model of the domain, and then invert the model to perform recognition via Bayesian inference. In
our case, the generative model is of the control task, i.e., the model produces sequences of stimulus-
response pairs such that the actual trial sequence would be generated with high probability. Instead
of learning this model from data, though, we assume that task instructions are ’programmed’ into
the model.

Our generative model of control tasks is sketched in Figure 2A as a dynamical Bayes net. Vertical
slices of the model represent the trial sequence; the subscript denotes the trial index. First we explain
the nodes and dependencies and then describe the conditional probability distributions (CPDs).

The B node represents the task associated with the current block of trials. (We use the term ’block’
as shorthand notation for this task.) The block on trial k has 8 possible values in the experiments we
model, and its value depends on the block on trial k − 1. The block determines the category of the
stimulus, C, which in turn determines the stimulus identity, S. The categories relevant to the present
experiments are: color label, block cue (the cue that identifies the task in the next block), upper/lower
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Figure 2: (A) Dynamical Bayes net depiction of our generative model of control tasks, showing the
trial-to-trial structure of the model. (B) A detailed depiction of the dashed rectangle in panel (A).

case for letters, and consonant/vowel for letters. The stimuli correspond to instantiations of these
categories, e.g., the letter Q which is an instance of an upper case consonant. Finally, the R node
denotes the response, which depends both on the current stimulus category and the current block.

This description of the model is approximate for two reasons. First, we decompose the category and
stimulus representations into shape and color dimensions, expanding C into Ccolor and Cshape, and
S into Scolor and Sshape. (When we refer to C or S without the superscript, it will denote both the
shape and color components.) Second, we wish to model the temporal dynamics of a single trial,
in order to explain response latencies. Although one could model the temporal dynamics as part of
the dynamical Bayes net architecture, we adopted a simpler and nearly equivalent approach, which
is to explicitly represent time, T , within a trial, and to assume that in the generative model, stimulus
information accumulates exponentially over time. With normalization of probabilities, this formu-
lation is identical to a naive Bayes model with conditionally independent stimulus observations at
each time step. With these two modifications, the slices of the network (indicated by the dashed
rectangle in Figure 2A) are as depicted in Figure 2B.

To this point, we’ve designed a generic model of any experimental paradigm involving context-
dependent stimulus-response mappings. The context is provided by the block B, which is essentially
a memory that can be sustained over trials. To characterize a specific experiment, we must specify
the CPDs in the architecture. These distributions can be entirely determined by the experiment de-
scription (embodied in Figure 1B,C). We toss in one twist to the model, which is to incorporate four
parameters into the CPDs that permit us to specify aspects of the human cognitive architecture, as
follows: ε, the degree of task knowledge (0: no knowledge; 1: perfect knowledge); λ, the persis-
tence of the block memory (0: memory decays completely from one trial to the next; 1: memory
is perfect); and γshape and γcolor, the rate of transmission of shape and color information between
stimulus and category representations. Given these parameters and the experiment description, we
can define the CPDs in the model:

• P (Bk = b′|Bk−1 = b) = δb′,b λ + (1− λ)/NB , where δ.,. is the Kronecker delta and NB is the
number of distinct block (task) identities. This distribution is a mixture of a uniform distribution
(no memory of block) and an identity mapping (perfect memory).

• P (Cz
k |Bk) = εP ∗(Cz

k |Bk) + (1 − ε)/NCz , where z ∈ {color, shape} and NCz is the number
of distinct category values along dimension z, and P ∗(.|.) is the probability distribution defined
by the experiment and task (see Figure 2B,C). The mixture parameter, ε, interpolates between
a uniform distribution (no knowledge of task) and a distribution that represents complete task
knowledge.

• P (Rk|Bk, Ck) = εP ∗(Rk|Bk, Ck) + (1− ε)/NR, where NR is the number of response alterna-
tives (including no-go).

• P (Sz
k = s|Cz

k = c, T = t) ∝ (1 + γzM
z(s, c))t, where z ∈ {color, shape} and Mz(s, c)

is a membership function that has value 1 if s is an instance of category c along dimension z,
or 0 otherwise. By this CPD, the normalized probability for stimulus s grows exponentially to
asymptote as a function of time t if s belongs to category c, and drops exponentially toward zero
if s does not belong to c.
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Figure 3: (top row) human neuroimaging data from three brain regions [6], (bottom row) entropy
read out from three nodes of the model. Full explanation in the text.

This formulation encodes the experiment description—as represented by the P ∗(.) probabilities—in
the model’s CPDs, with smoothing via ε to represent less-than-perfect knowledge of the experiment
description.

We would like to read out from the model a response on some trial k, given the stimulus on trial k,
Sk, and a history of past stimulus-response pairs, Hk = {S1...Sk−1, R1...Rk−1}. (In the experi-
ments, subjects are well practiced and make few errors. Therefore, we assume the R’s are correct
or corrected responses.) The response we wish to read out consists of a choice and the number of
time steps required to make the choice. To simulate processing time within a trial, we search over
T . Larger T correspond to more time for evidence to propagate in the model, which leads to lower
entropy distributions over the hidden variables Ck and Rk. The model initiates a response when
one value of Rk passes a threshold θ, i.e., when [maxr P (Rk = r|Sk, T, Hk)] > θ. This yields the
response time (RT)

t∗ = min
{

t |
[
max

r
P (Rk = r|Sk, T = t, Hk)

]
> θ

}
(1)

and the response r∗ = argmaxr P (Rk = r|Sk, T = t∗,Hk).

4 Simulation Results

We simulated the model on a trial sequence like that in the human study. We obtained mean RTs and
error rates from the model in the four experimental conditions of the two experiments (see the filled
cells of Figure 1B,C). The model’s five parameters—ε, λ, γshape, γcolor, and θ—were optimized to
obtain the maximum correlation between the mean RTs obtained from the simulation (Equation 1)
and the human data (Figure 1D). This optimization resulted in a correlation between human and
simulation RTs of 0.99 (compare Figure 1D and E), produced by parameter values ε = 0.87, λ =
0.79, γshape= 0.34, γcolor= 0.88, and θ = 0.63.

To express simulation time in units of milliseconds— the measure of time collected in the human
data—we allowed an affine transform, which includes two free parameters: an offset constant in-
dicating the time required for early perceptual and late motor processes, which are not embodied
in the model, and a scale constant to convert units of simulation time to milliseconds. With these
two transformation parameters, the model had a total of seven parameters. The astute reader will
note that there are only eight data points to fit, and one should therefore not be impressed by a close
match between simulation and data. However, our goal is to constrain model parameters with this
fit, and then explore emergent properties of the resulting fully constrained model.

One indication of model robustness is how well the model generalizes to sequences of trials other
than the one on which it was optimized. Across 11 additional generalization runs, the correlation
between model and empirical data remained high with low variability (ρ̄ = 0.97, σρ = 0.004).
Another indication of the robustness of the result is to determine how sensitive the model is to
the choice of parameters. If randomly selected parameters yield large correlations, then the model
architecture itself is responsible for the good fit, not the particular choice of parameters. To per-
form this test, we excluded parameters ranges in which the model failed to respond reliably (i.e.,
the model never attained the response criterion of Equation 1), or in which the model produced no

6



RT variation across conditions. These requirements led to parameter ranges of: 0.8 ≤ ε ≤ 0.98;
0.1 ≤ γcolor, γshape ≤ 1.5; 0.6 ≤ λ ≤ 0.98; 0.65 ≤ θ ≤ 0.85. All randomly selected combina-
tions of parameters in these ranges led to correlation values greater than 0.9, demonstrating that the
qualitative fit between model and behavioral results was insensitive to parameter selection, and that
the structure of the model is largely responsible for the fit obtained.

Koechlin, Ody, and Kouneiher [6] collected not only behavioral data, but also neuroimaging data
that identified brain regions involved in control, and how these brain regions modulated their activa-
tion across experimental manipulations. There were three manipulations in the experiments: (1) the
demand on response selection (varied along rows of Figure 1C), (2) the importance of task identity
(varied along the three columns of both Figure 1B and 1C), and (3) the demand of stimulus clas-
sification and selection of stimulus dimensions (varied along rows of Figure 1B). The top row of
Figure 3 shows effects of these experimental manipulations on the fMRI BOLD response of three
different brain regions.

The remarkable result obtained in our simulations is that we identified three components of the
model that produced signatures analogous to those of the fMRI BOLD response in three cortical
areas. We hypothesized that neural (fMRI) activity in the brain might be related to the entropy of
nodes in the model, on account of the fact that when entropy is high, many possibilities must be
simultaneously represented, which may lead to greater BOLD signal. Because fMRI techniques
introduce significant blurring in time, any measure in the model corresponding to the fMRI signal
would need to be integrated over the time of a trial. We therefore computed the mean entropy of
each model node over time T = 1...t∗ within a trial. We then averaged the entropy measure across
trials within a condition, precisely as we did the RTs. To compare these entropy measures to the
imaging data, the value corresponding to the bottom left cell of each experiment array (see Figure
1B and 1C) was subtracted from all of the conditions of that particular experiment. This subtraction
was performed because the nature of the MRI signal is relative, and these two cells form the baseline
conditions within the empirical observations. After performing this normalization, the values for R
and Cshape were then collapsed across the columns in panels B and C of Figure 1, resulting in a
bar for each row within each panel. Additionally, the values for B were then collapsed across the
rows of each panel, resulting in a value for each column. The model entropy results are shown in
the bottom row of Figure 3, and comparison with the top row reveals an exact correspondence. We
emphasize that these results are obtained with the model which was fully constrained by fitting the
RT data. Thus, these results are emergent properties of the model.

Based on functional neuroanatomy, the correspondence between model components and brain re-
gions is quite natural. Starting with the left column of Figure 3, uncertainty in the model’s response
corresponds to activity in premotor cortex. This activity is greater when the block calls for two dis-
tinct responses than when it calls for one. In the middle column of Figure 3, the uncertainty of shape
categorization corresponds to activity in posterior lateral prefrontal cortex. This region is thought
to be involved in the selection of task-relevant information, which is consistent with the nature of
the current conditions that produce increases. In the right column of Figure 3, the uncertainty of the
task identity (block) in the model corresponds to activity in anterior lateral PFC, a brain region near
areas known to be involved in WM maintenance. Interestingly, the lower the entropy the higher the
neural activity, in contrast to the other two regions. There is a natural explanation for this inver-
sion, though: entropy is high in the block node when the block representation matters the least, i.e.,
when the stimulus-response mapping does not depend on knowing the task identity. Thus, higher
entropy of the block node actually connotes less information to be maintained due to the functional
equivalence among classes.

5 Discussion

We proposed a theoretical framework for understanding cognitive control which provides a parsimo-
nious account of behavioral and neuroimaging data from two large experiments. These experiments
are sufficiently broad that they subsume several other experimental paradigms (e.g., Stroop, task
switching). Koechlin et al. [6] explain their findings in terms of a descriptive model that involves a
complex hierarchy of control processes within prefrontal cortex. The explanation for the neuroimag-
ing data that emerges from our model is arguable simpler and more intuitive.
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Figure 4: Task (block) representation over a sequence of trials that involves all eight task types.

The key insight that underlies our model is the notion that cortical representations are intrinsically
probabilistic. This notion is not too surprising to theorists in computational neuroscience, but it leads
to a perspective that is novel within the field of control: that the all-or-none updating of WM can be
replaced with a probabilistic notion of updating, and the view that WM holds competing hypotheses
in parallel. Framing WM in probabilistic terms also offers a principled explanation for why WM
should decay. The parameter λ controls a tradeoff between the ability to hold information over time
and the ability to update when new relevant information arrives. In contrast, many neural network
models have two distinct parameters that control these aspects of memory.

Another novelty of our approach is the notion of that control results from dynamical inference pro-
cesses, instead of being conceived of as resulting from long-term policy learning. Inference plays
a critical role on the WM (task identity) representation: WM is maintained not solely from internal
processes (e.g., the recurrent connections in a neural net), but is continually influenced by the ongo-
ing stream of stimuli via inference. The stimulus stream sometimes supports the WM representation
and sometimes disrupts it. Figure 4 shows the trial-to-trial dynamics of the WM in our model. Note
that depending on the task, the memory looks quite different. When the stimulus-response pairs
are ambiguous as to the task, the representation becomes less certain. Fortunately for the model’s
performance, this is exactly the circumstance in which remembering the task identity is least critical.

Figure 4 also points to a promising future direction for the model. The stream of trials clearly
shows strong sequential effects. We are currently pursuing opportunities to examine the model’s
predictions regarding performance on the first trial in a block versus subsequent trials. The model
shows an effect observed in the task switching literature: initial trial performance is poor, but control
rapidly tunes to the task and subsequent trials are more efficient and roughly comparable.

Our model seems to have surprisingly strong predictive power. This power comes about from the
fact that the model expresses a form of bounded rationality: the model encodes the structure of the
task, subject to limitations on memory, learning, and the rate of perceptual processing. Exploiting
this bounded rationality, especially within a probabilistic framework, leads to strong constraints, few
free parameters, and the ability to extend the model to new tasks without introducing additional free
parameters.
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